How to plan and build a biogas plant?

Content

- Introduction: Evonik New Energies GmbH
- Motivation
 - > German Biogas history
 - Sensibility
- Steps of Project Design Process
- Planning Process
 - Legal pre- conditions
 - Economical optimisation
- Biogas Technology
 - > Principles for the technological choice: input materials
 - Continuous versus non- continual processes
 - Comparison: dry and wet digestion
 - Process parameters
 - > Operation criteria
 - > Biogas utilisation Cogeneration
 - Separation
 - Site Necessities

Motivation

- German History with biogas:
 - from small agricultural plants to big industrial sites: step by step
 - from handmade to industrially manufactured components
 - many cost-expensive failures were made
 - => use the experiences through know-how exchange
- technology with high automation level but not selfrunning
 - => identification with the plant is crucial
- => Sensibility for the decisive technological
 aspects to check

Steps of Project Design Process

• Basics:

- Legal frame conditions define the general utilisation of input materials

- Gains or costs for the input materials are determined by the legal conditions and technical effort for them

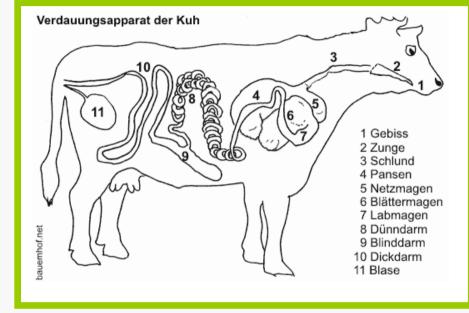
- Substance prices and further treatment costs have a major influence on the economical affordability

=> the input materials are decisive for the technology

- Decision on an appropriate biogas technology type after feasibility study with economical preview
- Detailed engineering
- Final layout after optimisation of design (depending on contracts closed)

Planning Process

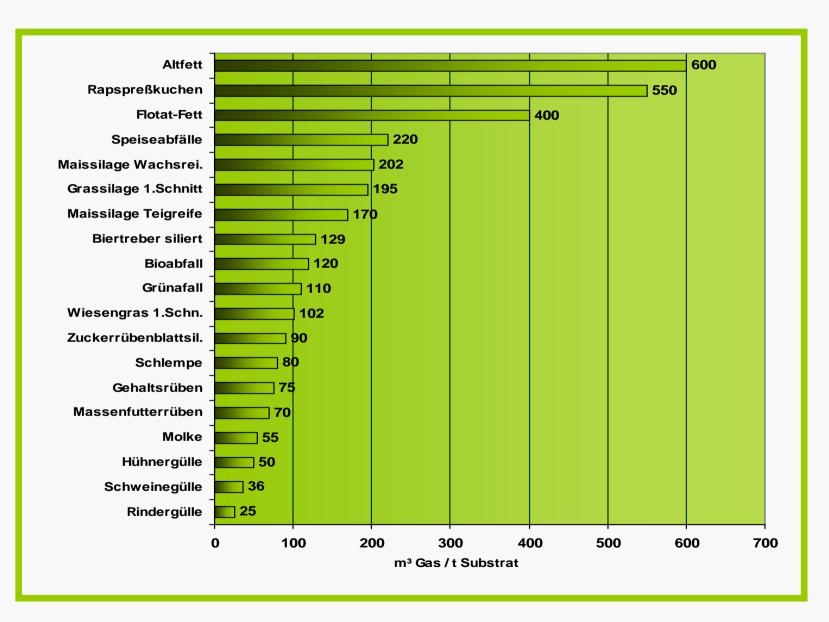
- Clarification of the legal frame conditions
 - ➤EU regulation
 - State law e.g. catalogue of allowed input materials or fermentation residues handling
 - Human security necessities
 - >Ensure the so-called "good technical practise"
 - >Technical necessities from grid operator


Planning Process

Economical optimisation

- Input materials: contractual definition of quantity and (gas) quality as well as punishment costs
- Delivery construction: small/ big vehicles or sampling systems => consequences for technical solution
- > Distance to the next grid connection (gas, electricity)
- Distance to heat consumers
- Type and volume of heat use: Vapour, hot water => choice of cogeneration units
- Enough area for storage of input and output materials on agricultural sites: Fertiliser demand on acres
- Biogas site: transport access, water, distance to sensible neighbours (emissions/ administrative objection?)
- Funds, CO2 certificates
- Waste management: conditions for recycling and non-recyclable substances

Ensure biogas basics


• Our main workers are bacteria: ensure their wealth!

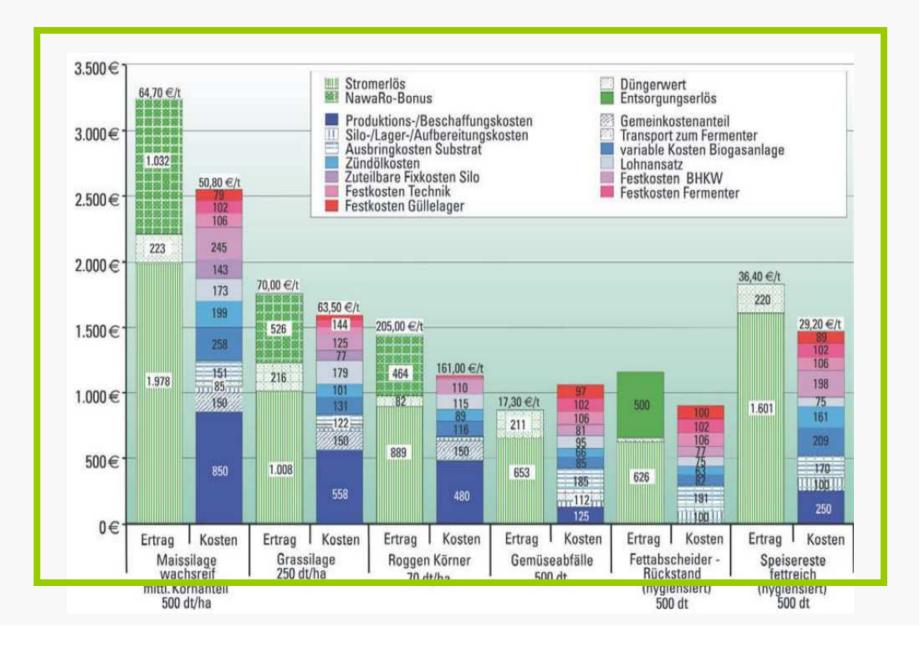
The bacteria are the same as in the fermentation apparatus inside a cow => liquid manure is favourite.

Biogas production from input materials

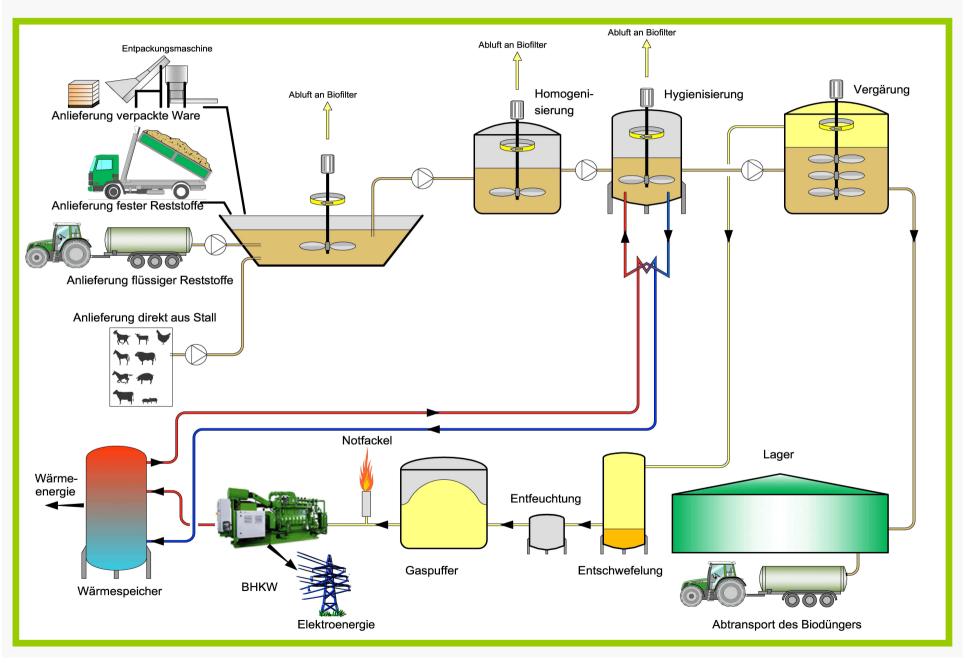
Choice of input materials

• Organic substances produce differing biogas qualities: cf. wheat for eating and biogas

Туре	CH ₄	CO ₂	NH ₄	H ₂ S
Carbon hydrates	50 %	50 %	0 %	0 %
Grease	71 %	29 %	0 %	0 %
Proteins	38 %	38 %	18 %	6 %

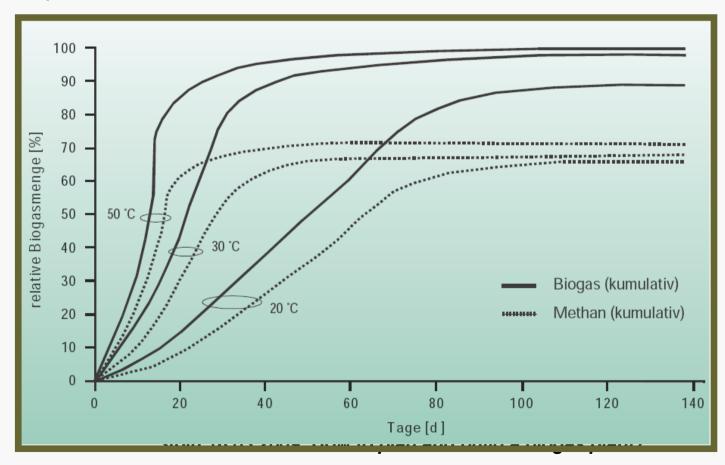

Final output: fertiliser liquid and solid

		Total substances			Solved substances		
	TS in %	N total % in TS	P ₂ O ₅ % in TS	K2O % in TS	(NO ₃ -N) mg/l	K ₂ O mg/l	NH₄N mg/l
Fertiliser before separation	3,50	19,64	5,09	5,11	≤ 0,035 mg/100g	1664	5040
Solid fertiliser	28,00	3,36	4,09	078	≤ 0,035 mg/100g	748	810
Liquid fertiliser	3,25	21,16	3,2	5,13	0,68	1568	4290



liquid fertiliser in lagoonsolid fertiliser in containerSibiu 18.03.2009: How to plan and build a biogas plant?

Calculation of costs and gains (example)



• Biogas Process steps

Basic decision between thermo- and mesophilous systems

The process to convert organic substances is depending on temperature and duration.

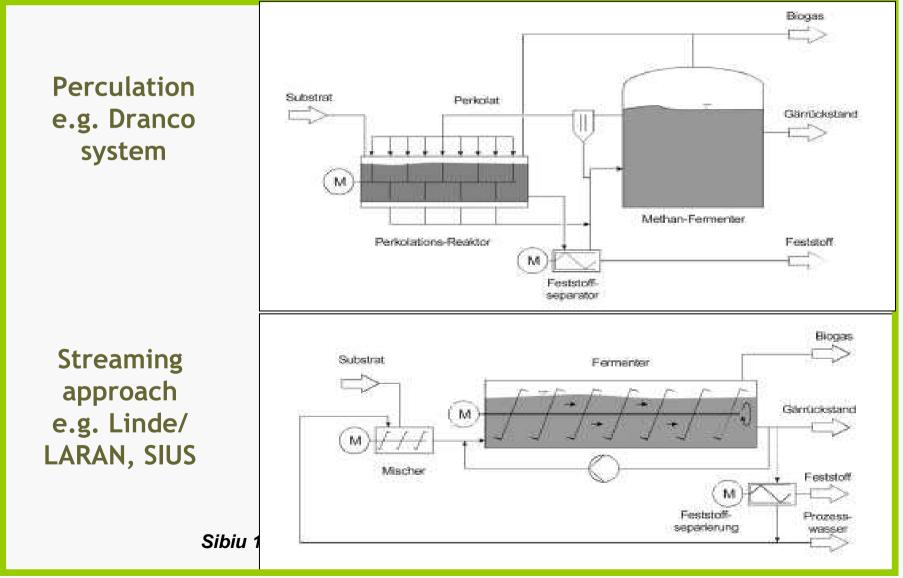
Choice of technology depending on risks

RISK Co- substrat	Without risk	Hygienically risky	With problematic particels	chemical waste, risky
Residues from agriculture	Liquid and solid manure, residues from plants	Liquid and solid manure, residues from plants		Manure spoiled with Cu and Sn
Energy crops	Silage, Wheat, whole plants			
Substances from EU1774/2002 list		Arbatory waste		Grease separator
Industrial organic waste	Vegetable waste, residues from nutrition industry	Old vegetable, spoiled by transport	Old vegetable, spoiled by transport	residues from bio-oil production
Organic residues from communities	grass		Bio- waste, green from street	Bio- waste, green from street

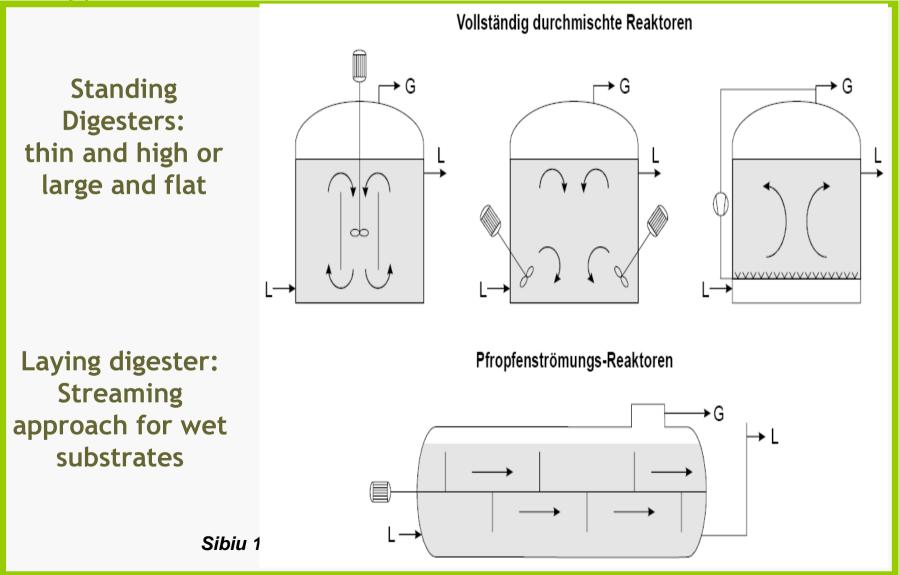
Biogas technology

- Site dependency: agricultural area
- In the case of liquid manure use, the plant site should be as nearest as possible to the stables. Reason: high water volumes with small biogas output.
- The liquid manure should be transferred by controlled pumps from these stables to the plant through closed pipes avoiding smell development.
- Analogous the fertiliser output shall be directly pumped back to the agricultural storages
- Suggestion: strict site separation between farm and biogas plant => no crossing streets, ensure hygienic regulation and find an appropriate solution for delivery ⇔ risks for the feedstock!
- Cheap area for large silage storages or can farmers deliver just in time?
- Obey the normal rules for fertiliser displacement on agricultural areas (mass, fertiliser and heavy metal contents, near to the soil technologies)

=> Up to 10 (15) km circle distances can be profitable


Biogas technology

- Site dependency: industrial area
 - Avoid smell, emissions and other influences for the neighboured industrial enterprises especially when introducing bio-waste and disposal to be transported to landfill stations
 - Reduce noise from transport, cogeneration, cutting machines
 - Only those substrates with high biogas outputs can be transported on long distances: collecting systems from experienced companies could be ideal and cheap partners (optimising the logistic handling)


=> Up to 100 km circle distances can be profitable

- Continuous versus non-continuous processes
 - Only dry fermentation processes can work under non-continuous conditions
 - Non- continuous (batch) approaches are rare in praxis as: Smell emissions occur during feeding
 - Huge amounts of methane were left into atmosphere which is a strong economic disadvantage and ecologically dangerous
 - Biogas quality and quantity are moving strongly cogeneration units
 - The majority of plants are running with wet fermentation processes.
 - Continuous approaches are preferred in praxis, as:
 - > Some input substances can only be cracked through wet fermentation
 - Biogas production can better be planned
 - > Operation is easier as process control can steadily be influenced.

• Types of dry fermentation:

• Types of wet fermentation:

• dry and wet fermentation: process conditions

Wet fermentation		Dry fermentation	
Organic partition	3 - 15%	> 30%	
Process temperature	37°C (mesophil) oder 55°C (thermophil)	37°C (mesophil) oder 55°C (thermophil)	
Room load	Between 0,8 kg/(m³*d) and 5,5 kg/(m³*d) (high digesters)	> 5,5 kg/(m³*d)	
Staying time	from 15 to 45 days	from 15 to 45 days	
Reduction of organic input	Depending on input material ar	nd process control	

• dry and wet fermentation: investment

	Wet fermentation	Dry fermentation
Delivery systems for input materials	Nearly equal	
Preparation of the input materials	Higher investment for storage and mix systems as well as separation of stones etc. in the entrance hall	More expensive transportation systems
Digestion		Higher costs through more expensive control components
Fertiliser usage	higher storage demand (95% water)	High costs to separate stones etc. from fertilizer; own costs for perculation production

Dry fermentation plants are often more expensive under equal pre-conditions.

• dry and wet fermentation: **operation costs**

	Wet fermentation	Dry fermentation
Delivery systems for input materials	Nearly equal	
Preparation of the input materials	Higher energy costs for mixing	Higher maintenance costs
Digestion	Higher energy costs for mixing	
Fertiliser usage	higher transport costs because of high useless water amounts	n

Operation costs speak in favour of dry fermentation!

• Decision criteria between dry and wet digestion process

Advantageous wet fermentation

- > Sites with nearby farms with cattle feedstock
- > Sites with a high portion of liquid input substances
- Arbatory, grease, nutrition industry
- > Low investment for equal quality and power

Advantageous dry fermentation

- > Sites with connection to farmers harvesting plants
- > Sites with guaranteed high bio waste input contracts
- Sites with obligatory need to low constructions
- > Biomass substrates with high amounts of stones, etc.

• Process parameters

All following parameters are influencing the efficiency of the digestion process and should therefore regularly be checked:

- Input materials
- Staying time
- PH-value / buffer capacity
- Carbon acids
- Sulphur hydrogen
- ≻ NH3
- Hindering substances
- Composition of bacteries

 Biogas use in cogeneration units: container solutions often cheaper as individual installations in own construction halls

Biogas technology choice

- Separation of fertiliser into liquid (=fugat, recyclat, perculat) and nearly compost equal solid fractions
 - Physical constitution of the fertiliser determine technology to use: separator with screws, centrifuges and presses
 - Separation shall optimise the whole process dient der Optimierung der Prozessführung

- Fugat use is substituting additional water supply to stipulate the biogas process
- Through special types of fermentation bacteries within the fugat, the input materials can easier and earlier be cracked; hydrolysis takes already place in the mixture components

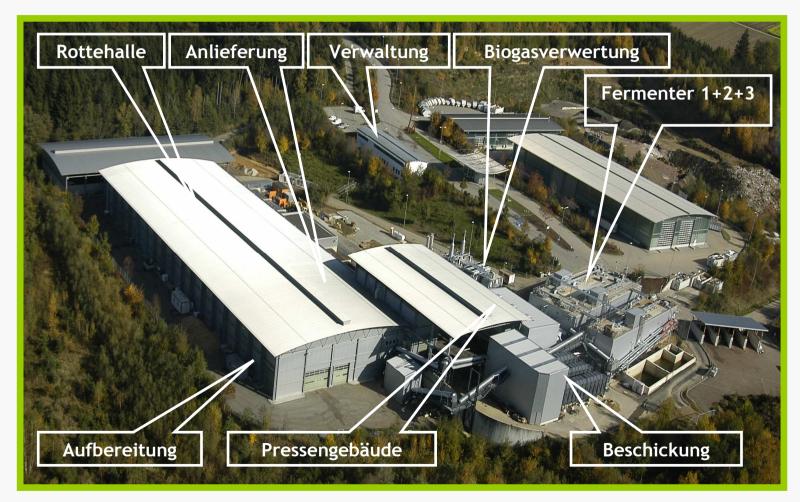
Biogas technology choice

- Separation
 - Reducing chemical fertiliser necessities

- Site necessities
 - Area demand of a biogas plant is depending on the necessary components
 - Utilising industrial, commercial and community bio waste, the big vehicles demand for a greater entrance area to handle transport
 - Input materials are prodused only one a year und have to be stored for a complete winter
 - Storage for silage is highly land consuming
 - It should be ensured, that all components can be reached through mobile shifting

Pictures from biogas plants

• Wet fermentation for agricultural input materials


Pictures from biogas plants

• Wet fermentation for all types of input materials

Pictures from biogas plants

• Dry fermentation plant

Sibiu 18.03.2009: How to plan and build a biogas plant?

